エネルギー貯蔵・バッテリーの研究のためのAFM

AFMにナノスケールで電気化学的プロセスを局所的にプローブできる機能を付加すると、エネルギー貯蔵研究のためのキャラクタリゼーションツールとして適しています。さまざまなAFMテクニックが、リチウムイオンバッテリーやスーパーキャパシタから燃料電池にわたり、エネルギー貯蔵デバイスで使用される次世代材料のエネルギー密度や寿命を拡張するために広く使用されています。AFMは、デバイスの性能や信頼性に関わるナノ構造の効果を研究するためによく選ばれているようですが、局所的なイオン輸送や反応性を研究するためにも使用されます。

機能

  • 電気化学ストレイン顕微鏡(ESMElectrochemical Strain Microscopy)は、イオン輸送、インターカレーション動力学、反応性の研究を可能にします  
  • 電気化学セルを用いた酸化還元反応のin-situ研究(MFPファミリーAFMで使用可能)
  • 電極‐電解質界面の電気二重層のイメージングが可能な高い力感度
  • 高分解ナノ構造のキャラクタリゼーションにより、デバイス性能の最適化が可能
  • グローブボックスはターンキーソリューションで利用可

一般的なアプリケーション

  • リチウムイオンバッテリー
  • 燃料電池
  • スーパーキャパシタ
  • イオン液体の電気二重層
  • 電極とセパレータの材料
  • 電極のナノ構造
  • 電気化学
  • 充電‐放電サイクルのモルフォロジカルな影響

Selected Publications

T. M. Arruda, M. Heon, V. Presser, P. C. Hillesheim, S. Dai, Y. Gogotsi, S. V. Kalinin, and N. Balke, "In situ tracking of the nanoscale expansion of porous carbon electrodes," Energy Environ. Sci. 6, 225-231 (2013). doi:10.1039/c2ee23707e

N. Balke, E. A. Eliseev, S. Jesse, S. Kalnaus, C. Daniel, N. J. Dudney, A. N. Morozovska, and S. V. Kalinin, "Three-dimensional vector electrochemical strain microscopy," J. Appl. Phys. 112, 052020 (2012). doi:10.1063/1.4746085

J. M. Black, D. Walters, A. Labuda, G. Feng, P. C. Hillesheim, S. Dai, P. T. Cummings, S. V. Kalinin, R. Proksch, and N. Balke, "Bias-Dependent Molecular-Level Structure of Electrical Double Layer in Ionic Liquid on Graphite," Nano Lett. 13, 5954-5960 (2013). doi:10.1021/nl4031083

A. Elbourne, S. McDonald, K. Voïchovsky, F. Endres, G. G. Warr, and R. Atkin, "Nanostructure of the Ionic Liquid-Graphite Stern Layer," ACS Nano 9, 7608-7620 (2015). doi:10.1021/acsnano.5b02921

H. Gao, F. Xiao, C. B. Ching, and H. Duan, "Flexible All-Solid-State Asymmetric Supercapacitors Based on Free-Standing Carbon Nanotube/Graphene and Mn3O4 Nanoparticle/Graphene Paper Electrodes," ACS Appl. Mater. Interfaces 4, 7020-7026 (2012). doi:10.1021/am302280b

S. Guo, S. Jesse, S. Kalnaus, N. Balke, C. Daniel, and S. V. Kalinin, "Direct Mapping of Ion Diffusion Times on LiCoO2 Surfaces with Nanometer Resolution," J. Electrochem. Soc. 158, A982 (2011). doi:10.1149/1.3604759

S. Kalinin, N. Balke, S. Jesse, A. Tselev, A. Kumar, T. M. Arruda, S. Guo, and R. Proksch, "Li-ion dynamics and reactivity on the nanoscale," Mater. Today 14, 548-558 (2011). doi:10.1016/s1369-7021(11)70280-2

A. Kumar, F. Ciucci, A. N. Morozovska, S. V. Kalinin, and S. Jesse, "Measuring oxygen reduction/evolution reactions on the nanoscale," Nat. Chem. 3, 707-713 (2011). doi:10.1038/nchem.1112

A. Kumar, D. Leonard, S. Jesse, F. Ciucci, E. A. Eliseev, A. N. Morozovska, M. D. Biegalski, H. M. Christen, A. Tselev, E. Mutoro, E. J. Crumlin, D. Morgan, Y. Shao-Horn, A. Borisevich, and S. V. Kalinin, "Spatially Resolved Mapping of Oxygen Reduction/Evolution Reaction on Solid-Oxide Fuel Cell Cathodes with Sub-10 nm Resolution," ACS Nano 7, 3808-3814 (2013). doi:10.1021/nn303239e

B. S. Lalia, Y. A. Samad, and R. Hashaikeh, "Nanocrystalline-cellulose-reinforced poly(vinylidenefluoride- co -hexafluoropropylene) nanocomposite films as a separator for lithium ion batteries," J. Appl. Polym. Sci.126, E442-E448 (2012). doi:10.1002/app.36783

D. N. Leonard, A. Kumar, S. Jesse, M. D. Biegalski, H. M. Christen, E. Mutoro, E. J. Crumlin, Y. Shao-Horn, S. V. Kalinin, and A. Y. Borisevich, "Nanoscale Probing of Voltage Activated Oxygen Reduction/Evolution Reactions in Nanopatterned (LaxSr1-x)CoO3-δ Cathodes," Adv. Energy Mater. 3, 788-797 (2013). doi:10.1002/aenm.201200681

S. S. Nonnenmann, and D. A. Bonnell, "Miniature environmental chamber enabling in situ scanning probe microscopy within reactive environments," Rev. Sci. Instrum. 84, 073707 (2013). doi:10.1063/1.4813317

I. Sirés, C. Low, C. P. de León, and F. Walsh, "The characterisation of PbO2-coated electrodes prepared from aqueous methanesulfonic acid under controlled deposition conditions," Electrochim. Acta 55, 2163-2172 (2010). doi:10.1016/j.electacta.2009.11.051

B. Wang, J. Park, C. Wang, H. Ahn, and G. Wang, "Mn3O4 nanoparticles embedded into graphene nanosheets: Preparation, characterization, and electrochemical properties for supercapacitors," Electrochim. Acta 55, 6812-6817 (2010). doi:10.1016/j.electacta.2010.05.086

B. Wang, Y. Wang, J. Park, H. Ahn, and G. Wang, "In situ synthesis of Co3O4/graphene nanocomposite material for lithium-ion batteries and supercapacitors with high capacity and supercapacitance," J. Alloys Compd. 509, 7778-7783 (2011). doi:10.1016/j.jallcom.2011.04.152

W. Yan, J. Y. Kim, W. Xing, K. C. Donavan, T. Ayvazian, and R. M. Penner, "Lithographically Patterned Gold/Manganese Dioxide Core/Shell Nanowires for High Capacity, High Rate, and High Cyclability Hybrid Electrical Energy Storage," Chem. Mater. 24, 2382-2390 (2012). doi:10.1021/cm3011474

D. M. Yu, S. T. Zhang, D. W. Liu, X. Y. Zhou, S. H. Xie, Q. F. Zhang, Y. Y. Liu, and G. Z. Cao, "Effect of manganese doping on Li-ion intercalation properties of V2O5 films," J. Mater. Chem. 20, 10841 (2010). doi:10.1039/c0jm01252a

J. Zhu, J. Feng, L. Lu, and K. Zeng, "In situ study of topography, phase and volume changes of titanium dioxide anode in all-solid-state thin film lithium-ion battery by biased scanning probe microscopy," J. Power Sources 197, 224-230 (2012). doi:10.1016/j.jpowsour.2011.08.115

J. Zhu, L. Lu, and K. Zeng, "Nanoscale Mapping of Lithium-Ion Diffusion in a Cathode within an All-Solid-State Lithium-Ion Battery by Advanced Scanning Probe Microscopy Techniques," ACS Nano 7, 1666-1675 (2013). doi:10.1021/nn305648j