生体分子、メンブレン、生体分子アセンブリの研究のためのAFM

AFMは、生理的条件付近の分子構造を分解できる強力なツールです。サンプルを本来の状態(完全水和や生体関連温度)でイメージングできます。固定やコーティング、脱水といった追加のサンプル処理は不要です。AFMの主な長所は動的なイベントをモニターできる機能です。サンプル調整が最小限で済むため、分子間の相互作用や外的要因に対する分子の応答を観察できます。ほかにもAFMが分子のメカニカル特性を測定できる機能があります。ピコニュートンの力を検出可能で、分子内力や分子間力を測定できます。これにより、タンパク質がどのように組織化するのかや、タンパク質をほどくのに必要な力といった研究者のタンパク質ダイナミクスの理解が向上します。

機能

  • 生体分子および生体膜の高分解能イメージング(サブナノメートル水平方向、サブオングストローム垂直方向分解能)
  • 生体関連溶液中での操作
  • 流体交換(例えば、水溶液中における、バッファー成分の交換、他の生体分子の追加、薬剤など)
  • 単分子のフォーススペクトロスコピー
 

一般的なアプリケーション

  • DNAの構造およびDNA-タンパク質相互作用
  • DNAオリガミ
  • 膜タンパク質の構造
  • タンパク質凝集 / 線維形成 (例えば、アミロイド、アクチン、インシュリン)
  • モジュラータンパク質のプリング
  • 脂質二重層 / 支持型脂質二重層

Selected Publications

J. N. Abraham, D. Kedracki, E. Prado, C. Gourmel, P. Maroni, and C. Nardin, "Effect of the Interaction of the Amyloid β (1-42) Peptide with Short Single-Stranded Synthetic Nucleotide Sequences: Morphological Characterization of the Inhibition of Fibrils Formation and Fibrils Disassembly," Biomacromolecules 15, 3253-3258 (2014). doi:10.1021/bm501004q

R. B. Best, S. B. Fowler, J. L. T. Herrera, A. Steward, E. Paci, and J. Clarke, "Mechanical Unfolding of a Titin Ig Domain: Structure of Transition State Revealed by Combining Atomic Force Microscopy, Protein Engineering and Molecular Dynamics Simulations," J. Mol. Biol. 330, 867-877 (2003). doi:10.1016/s0022-2836(03)00618-1

R. B. Best, B. Li, A. Steward, V. Daggett, and J. Clarke, "Can Non-Mechanical Proteins Withstand Force? Stretching Barnase by Atomic Force Microscopy and Molecular Dynamics Simulation," Biophys. J. 81, 2344-2356 (2001). doi:10.1016/s0006-3495(01)75881-x

S. A. Contera, K. Voïtchovsky, and J. F. Ryan, "Controlled ionic condensation at the surface of a native extremophilemembrane," Nanoscale 2, 222-229 (2010). doi:10.1039/b9nr00248k

Y. Ebenstein, N. Gassman, S. Kim, and S. Weiss, "Combining atomic force and fluorescence microscopy for analysis of quantum-dot labeled protein-DNA complexes," J. Mol. Recognit. 22, 397-402 (2009). doi:10.1002/jmr.956

C. A. Grant, D. J. Brockwell, S. E. Radford, and N. H. Thomson, "Effects of hydration on the mechanical response of individual collagen fibrils," Appl. Phys. Lett. 92, 233902 (2008). doi:10.1063/1.2937001

S. Guo, and B. B. Akhremitchev, "Packing Density and Structural Heterogeneity of Insulin Amyloid Fibrils Measured by AFM Nanoindentation," Biomacromolecules 7, 1630-1636 (2006). doi:10.1021/bm0600724

C. wen Hsieh, and S. Hsieh, "Nanoparticle chain formation on functional surfaces using insulin fibrils as a structure directing agent," J. Mater. Chem. 21, 16900 (2011). doi:10.1039/c1jm10136f

M. S. Z. Kellermayer, A. Karsai, M. Benke, K. Soos, and B. Penke, "Stepwise dynamics of epitaxially growing single amyloid fibrils," PNAS 105, 141-144 (2007). doi:10.1073/pnas.0704305105

A. S. Mostaert, R. Crockett, G. Kearn, I. Cherny, E. Gazit, L. C. Serpell, and S. P. Jarvis, "Mechanically functional amyloid fibrils in the adhesive of a marine invertebrate as revealed by Raman spectroscopy and atomic force microscopy," Arch. Histol. Cytol. 72, 199-207 (2009). doi:10.1679/aohc.72.199

A. S. Mostaert, M. J. Higgins, T. Fukuma, F. Rindi, and S. P. Jarvis, "Nanoscale Mechanical Characterisation of Amyloid Fibrils Discovered in a Natural Adhesive," J. Biol. Phys. 32, 393-401 (2006). doi:10.1007/s10867-006-9023-y

E. Oroudjev, J. Soares, S. Arcidiacono, J. B. Thompson, S. A. Fossey, and H. G. Hansma, "Segmented nanofibers of spider dragline silk: Atomic force microscopy and single-molecule force spectroscopy," PNAS 99, 6460-6465 (2002). doi:10.1073/pnas.082526499

M. Schlierf, and M. Rief, "Temperature Softening of a Protein in Single-molecule Experiments," J. Mol. Biol. 354, 497-503 (2005). doi:10.1016/j.jmb.2005.09.070

K. H. Sheikh, C. Giordani, J. I. Kilpatrick, and S. P. Jarvis, "Direct Submolecular Scale Imaging of Mesoscale Molecular Order in Supported Dipalmitoylphosphatidylcholine Bilayers," Langmuir 27, 3749-3753 (2011). doi:10.1021/la104640v

A. G. Végh, K. Nagy, Z. Bálint, Á. Kerényi, Gá. Rákhely, G. Váró, and Z. Szegletes, "Effect of Antimicrobial Peptide-Amide: Indolicidin on Biological Membranes," J. Biomed. Biotechnol. 2011, 1-6 (2011). doi:10.1155/2011/670589

K. Voïtchovsky, S. A. Contera, M. Kamihira, A. Watts, and J. Ryan, "Differential Stiffness and Lipid Mobility in the Leaflets of Purple Membranes," Biophys. J. 90, 2075-2085 (2006). doi:10.1529/biophysj.105.072405

N. Y. Wong, C. Zhang, L. H. Tan, and Y. Lu, "Site-Specific Attachment of Proteins onto a 3D DNA Tetrahedron through Backbone-Modified Phosphorothioate DNA," Small 7, 1427-1430 (2011). doi:10.1002/smll.201100140

R. Zhang, X. Hu, H. Khant, S. J. Ludtke, W. Chiu, M. F. Schmid, C. Frieden, and J.-M. Lee, "Interprotofilament interactions between Alzheimer's Aβ1-42 peptides in amyloid fibrils revealed by cryoEM," PNAS 106, 4653-4658 (2009). doi:10.1073/pnas.0901085106